

Underlying event studies using calorimeter clusters

status report

S.Chekanov

(HEP division, ANL, USA)

May 27, 2010

ATLAS SM Meeting

Introduction

- Thanks to all people participating in this analysis.
- Many elements have been taken from the tracking UE studies + calorimeter-performace studies
- https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopoClustersUE

TopoClustersUE

- ◆ Studies of particle flow using calorimeter clusters in pp collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC

 - ↓ Paper outline
 - ↓ Introduction
 - ↓ Supporting material
 - ↓ Notes
 - ↓ Talks
 - → Proposed final plots
 - ↓ Analysis Code
 - ↓ Topocluster energy scale

Studies of particle flow using calorimeter clusters in pp collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC

People

C. Bertella , A. Buckley, S. Chekanov , P. Giovaninni , N. Kanaya ,D. Kar, A. Moraes, S. Menke , J. Nielsen, G.A. Hare, J. Proudfoot , C. Roda , P.Starovoitov, I. Vivarelli , R. Yoshida , J. Zhang

Contains drafts, talks, paper outline, CONF draft

Introduction

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TopoClustersUE

ATL-COM-PHYS-2010-210

ATLAS NOTE

May 14, 2010

Underlying event particle flow based on calorimeter clusters in pp collisions at 900 GeV with the ATLAS detector at the LHC

C. Bertella^a, S. Chekanov^b, P. Giovaninni^c, N. Kanaya^d, S. Menke^c, J. Proud P. Starovoitov^e, I. Vivarelli^f, R. Yoshida^b, J. Zhang^b

ATL-COM-PHYS-2010-293

ATLAS NOTE

May 14, 2010

Draft version 1.0

- Underlying event particle flow based on calorimeter clusters in pp
- collisions at 7 TeV with the ATLAS detector at the LHC
- C. Bertella^a, S. Chekanov^b, P. Giovaninni^c, N. Kanaya^d, S. Menke^c, J. Proudfoot^b, C. Roda^a, P. Starovoitov^e, I. Vivarelli^f, R. Yoshida^b, J. Zhang^b

Draft version 1.0

ATLAS NOTE

May 14, 2010

CONF note draft:

- Studies of particle flow using calorimeter clusters in $\it pp$ collisions at 900
- GeV and 7 TeV with the ATLAS detector at the LHC
 - C. Bertella^a, A. Buckley^b, S. Chekanov^c, P. Giovaninni^d, G.A. Hare^e, N. Kanaya^f, D. Kar^d,
- S. Menke^g, J. Nielsen^e, J. Proudfoot^c, C. Roda^a, P. Starovoitov^g, I. Vivarelli^h, R. Yoshida^c,

S. Wahrmund^d, J. Zhang^c

Introduction to UE studies

A typical example of the UE studies

The "underlying event" consists of

- hard initial & final-state radiation
- beam-beam remnants
- possible multiple parton interactions

ATLAS UE studies based on tracks:

- ATL-COM-PHYS-2010-164
- ATL-COM-PHYS-2010-165
- ATL-COM-PHYS-2010-175
- ATL-COM-PHYS-2010-237
- ATL-COM-PHYS-2010-238 CONF note

Δ

UE studies using topoclusters

- Use calorimeter measurements taking advantage a fine calorimeter granularity
 - Systematically completely independent of tracking
 - Do we see the same discrepancies with MC as for the tracking analysis?
 - Look at a complete final state (charged & neutral particles).
 - + additional 40% of final state not seen by the tracking analysis
 - More relevant for future jet-based studies
 - Where the UE is the main issue for precision measurements
- Topoclusters are the natural choice for such measurements:
 - provide efficient noise and pile-up suppression
 - correspond to individual hadrons

(From a P.Loch's talk)

Event & Topocluster selection: 900 GeV

- Good runs: 141565, 141707,141746,141748,141811,142166,142191,142193,142195,142383
- Monte Carlo sample: ATLAS-GEO-08-00-02 (r1051)
- L1_MBTS_1 trigger. Good primary vertex

TopoClusters:

- Topoclusters after local hadronic calibration (EM-scale as systematics checks)
- Concentrate on the central region |eta|<2.5 (easy cross check with tracks)
- pT>500 MeV and above (as for the tracking analysis)

Event & Topocluster selection: 7 TeV

- ◆ Good run & lumi blocks for 152166- 152844. Lumi ~ 238 μb⁻¹
- Same event cuts as for 900 GeV + pile-up removal
- Same cuts on topoclusters

QCD predictions

- ◆ PYTHIA MC09
- ◆ PYTHIA Perujia0
- **◆ PYTHIA DW**
- PHOJET

- pT ordered shower, tuned to pp(bar) data.
- tuned using only MinBias data from pp(bar)
- virtuality-ordered parton shower + max ISR
- better description of hard diffraction

- Main MC for unfolding
- (used for systematics studies)
- (only for truth comparison)
- (used for systematics studies)

6

A

Topocluster properties for the UE studies

Good match between the jet axis and a leading topocluster

dR – a distance (in η and φ) between a leading topocluster and anti-KT jet

Leading in pT topocluster

38.4% (data) 39.3% (MC09)

Data 2010 \(\)

20000
18000
16000
14000
12000
15 10 15 20 25 30
pT(lead) [GeV]

Good association with the number of truth hadrons & reasonable description by MC

See profile plots, comparisons in slices etc. in ATL-COM-PHYS-2010-210

- Good position measurements. Agreement with MC
 - See April's workshop on jet reconstruction (J.Proudfoot etc..)

Energy-scale measurements

http://indico.cern.ch/getFile.py/access?contribId=3&resId=0&materialId=paper&confId=87760

From P.Starovoitov

- Compare <E/p> for data and MC
- Many studies by several groups
- Agreement within 3% in most regions, and ~10% in the transition region
- Use data/MC ratios in a grid in η -P for systematics studies (not what shown here!)

For hadronic TopoClusters, data and MC agree for calibrated and uncalibrated clusters within ~4%

• For trackless clusters, see J.Zhang's talk :

http://indico.cern.ch/getFile.py/accesscontribId=49&sessionId=6&resId=0&materialId=slides&confId=88935

TopoCluster properties at 900 and 7 TeV GeV

Reasonable agreement with MC09 & Perugia0 tunes

Detector-level distributions

Sensitivity to MC tunes. Can be used for MC tuning

- unfold the distributions to the truth level to simplify the task No single MC tune with a good description of all distributions.

Example of the correction procedure

p_ (lead) [GeV]

- Example of worst-case correction (50%)
- Other distributions have smaller corrections

S.Chekanov (ANL)

p_(lead) [GeV]

Perugia0 and DW are disfavored. Some (smaller) problems with MC09

Final results

DW and MC09 are closest to data, but within the systematic-uncertanty band Perugia0 underestimates the data

Final results

Perugia0 describes the data well

Summary

- First UE measurements using calorimeter objects
 - Directly relevant for future calorimeter-based measurements
 - Studies are sensitive to the entire hadronic final state (+40% compare to the tracking analysis)
- Provide systematically independent check of our track-based measurements
 - Additional constraint on the UE understanding & model tunings
- TopoClusters measurements confirm the conclusions for charged-particle UE studies.
 - No MC tunes with good description of all observables
 - MC tunes have smaller particle activity in the transverse regions
 - systematically below the data in the transverse region
 - but the discrepancies are not too strong given the large systematic uncertainties

Two technical notes are ready, CONF note is available

15

Backup slides

Correction procedure

- All distributions are measured with respect to "reference" particles
- Mismeasured particle introduces smearing (lower purity in bins)
- Can be taken into account using a bin-by-bin correction:

C= N(gen)/N(reco) = purity / efficiency

Corrects for:

- event selection
- clusters selection (inefficiencies due to threshold cut effect, losses, merging/splitting etc.)
- resolution smearing (leading cluster is lost), other impurity effects
- decays of long-lived resonances (truth level is defined by $\tau < 3.10^{-10} \, \text{sec}$)
- Resolution smearing is minimized choosing bin sizes larger than resolutions in each bin
- Model dependence is controlled using alternative MCs
- Tested using track-based MinBias studies (fully agrees with the track-weighting approach)
 - ATL-COM-PHYS-2010-165 and ATL-COM-PHYS-2010-237
- No correction for diffraction was applied:
 - Single and Double diffraction is expected at the level of:
 - <1% for PYTHIA (SD/DD) when pT>1 GeV
 - ~1% for PHOJET (SD/DD) more diffractive events at pT>1 GeV (hard diffraction), but SD/DD are similar in shape and show a small contribution to the final densities
- Only measurements are presented where the correction factor are understood and <50%

Systematic uncertainties

- Reject events with N(clusters)<3 (diffraction)
- Energy scale using the grid in η-P (to take into account 10% uncertainty in the transition region)
 - Includes +3 MeV shift to account for the difference between data and MC for pi0 peak
- ± 0.025 rad for cluster centers φ and η (shift by 1 Ecell)
- (a) PYTHIA with 10% extra material; (b) with improved PP0 geometry
 - http://cdsweb.cern.ch/record/1243587
- Using Peruji0 for unfolding (model dependence)
 - A typical difference between bin-by-bin corrections ~1.5%
- Entire analysis repeated using EM-scale clusters

Check	$N/d\delta\phi$	$< p_T > $ vs N	$< N > $ vs $p_T(lead)$
Event selection	$\pm 0.5\%$	$\pm 0.5\%$	1.5%
Energy scale	±4.7%	$\pm 1.2\%$	$\pm 5\%$
ϕ positions	±1.3%	$\pm 0.2\%$	$\pm 0.2\%$
η positions	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$
Additional material	±0.5%	$\pm 0.8\%$	$\pm 1.8\%$
Model dependence	±1.5%	±1.0%	±1.5%